Shizhao Yang

+1 206 688 9210| syang71@uw.edu |GitHub| LinkedIn

EDUCATION

University of Washington, Seattle, WA

-expected Mar 2025

M.S. in Biostatistics (Modeling and Methods pathway)

New York University, New York, NY

May 2023

B.S. in Data Science, Genomics concentration (Minor: Mathematics)

LEADERSHIP & MENTORSHIP EXPERIENCE

• ASA DataFest 2024 Mentor, Department of Statistics, University of Washington, March 2024

RESEARCH EXPERIENCE

Scientific Research

Single-cell Lineage Embedding Contrastive Learning

Seattle, WA, Nov 2023-present

Researcher

Supervisor: Kevin Lin, University of Washington

- Designed and implemented a contrastive learning algorithm to learn the high-dimensional embeddings of single-cell data, facilitating the identification of lineage-specific gene expression patterns.
- Develop an evaluation metric for comparing the different embeddings of single-cell data generated by the model.

Python-based RNA-seq Analysis Algorithm using Negative Binomial GLM

New York, USA, June-Dec 2022

Research Assistant

Supervisor: Manpreet Katari, New York University

- Build a python-based Stats Model based on GLM with negative binomial distribution for gene's differential expression analysis.
- Use backtracking line search in dispersion estimation and IRLS (iterative reweighted least squares) in coefficient estimation and apply the Wald Test to the estimated log fold changes.
- Exploit Python's built-in package to enable multiprocessing to shrink the overall runtime from 3 hours to about 3 minutes.
- Test the algorithm on several different datasets and compare the results with actual and estimated values generated by Deseq2.

SRPMS (Student Research Program in Molecular Science)

Investigation of Horizontal Transfer in Metagenomics

Shanghai, China, June 2021-Jan 2022

Research Assistant

Supervisor: Gang Fang, NYU Shanghai, NYU

- Implemented RNA-seq Analysis on Next-Generation Sequencing data of human gut microbiome, including de novo genome assembly, mapping, gene-calling, and annotation using HPC (high-performance computer) and related pipelines.
- Adopted the Louvain Method to generate pseudo ortholog communities by comparing the similarity between each gene.
- Calculated TPM and self-defined index (PI) related to gene persistence and identified the correlation between the TPM and PI using Python and R.
- Extracted differential expressed genes related to HTG by adopting statistical methods, including ANOVA

Course Project

Intro to Math Modeling

New York, USA

Refined SIR Model with Vaccination and its Application in 2022 NYC Influenza A Activity Prediction

September 2022-December 2022

- Implemented a series of ODE methods (including fixed point and its stability, phase plane, and Herd Immunity) to analyze the modified SIR model with the consideration of Vaccination analytically.
- Simulated the NYC influenza data of the past six years using the SIRV model and estimated the transmission rate, removal rate, and reproduction number (R0) using the Quasi-Newton method on Python.
- Compared the estimated coefficients of the past seasons and predicted the infection peak in NYC this year under

Shizhao Yang

+1 206 688 9210| syang71@uw.edu |GitHub| LinkedIn

different vaccination rates.

Transcriptomics New York, USA

RNA-seq Analysis of Brain gene expression in Female and Male D. melanogaster post-eclosion

March 2022-May 2022

- Implemented RNA-seq alignment against the reference genome using HPC and hisat2 package.
- Analyzed the differential gene expression with different methods, including PCA(Principal Component Analysis), Clustering Analysis, GO-term Analysis, and GSEA(Gene Set Enrichment Analysis) using R with limma and deseq2 packages.
- Compared the result of differentially expressed genes with those from published papers using similar datasets and presented the analysis of differences and similarities in the report.

Machine Learning

Shanghai, China

Drug sensitivity prediction using machine learning models

September 2021-December 2021

- Found appropriate dataset from CCLE (Cancer Cell Line Encyclopedia) database and implemented data munging method.
- Implemented SVM(Support Vector Machine), Linear Regression Random Forest, Stacking, and ANN(Artificial neural networks) to predict the sensitivity of drugs given the drug information and patients' gene expression information.
- Integrated meaningful outcomes from stimulations and demonstrated them with Python.

LANGUAGES & PROFESSIONAL SKILLS

- Chinese (native), English (fluent)
- Programming Languages: Python, R, Linux (Shell), SQL, MongoDB, HTML, MATLAB, Javascript
- Analytics Skills: Statistical modeling, Numerical analysis, Machine Learning
- Bioinformatics Applications: SPAdes, Bowtie2, Hisat2, Samtools, diamond, Blast, Limma, Deseq2